
516 FINAL PROJECT

AJ Acacio, Padmapriya Eunny, Isha Jain, Sita Sanjivini Sawhney, Riya Sirdeshmukh

Here is the code for scraping from Reddit. Commenting it out as we froze out dataset.

title body flair score num_comments id url

0 CMV: Student Loans Should Not be Guaranteed by... I was surprised to see that this topic has not... None 168 123 ug3oa7 https://www.reddit.com/r/changemyview/comments...

1 CMV: *IF* you believe isolation from lockdown ... edit note: \nWhile I've already awarded delta... Delta(s) from OP 440 201 ufqwxc https://www.reddit.com/r/changemyview/comments...

2 CMV: US Colleges should not waste student's ti... I went to a very competitive college in the US... Delta(s) from OP 1892 638 ufdhhz https://www.reddit.com/r/changemyview/comments...

3 CMV: There is Nothing Wrong with Abortion What... We do not treat life as something that is sacr... None 15 85 ug4uhk https://www.reddit.com/r/changemyview/comments...

4 CMV: Western countries should invest in and su... Admittedly, I do not know much about the compl... Delta(s) from OP 1270 140 uf9cyg https://www.reddit.com/r/changemyview/comments...

In [2]: #importing modules

#import praw - commented out as scraping no longer needed

import pandas as pd

import requests

from bs4 import BeautifulSoup

import nltk

from nltk.corpus import stopwords

from nltk.corpus import brown

from collections import Counter

import numpy as np

from pprint import pprint

from nltk.sentiment.vader import SentimentIntensityAnalyzer

import os

import string, collections

import re

from string import punctuation

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

from sklearn.decomposition import LatentDirichletAllocation as LDA

from sklearn.naive_bayes import MultinomialNB

from sklearn import metrics

from scipy.sparse import hstack

from sklearn.model_selection import train_test_split

from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier, BaggingClassifier

from sklearn.compose import ColumnTransformer

from sklearn.pipeline import Pipeline

from sklearn.svm import LinearSVC

from sklearn.tree import DecisionTreeClassifier

from sklearn import tree

from sklearn.linear_model import LogisticRegression, PassiveAggressiveClassifier

from sklearn.neighbors import RadiusNeighborsClassifier

from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay

import statsmodels.api as sm

import matplotlib.pyplot as plt

from sklearn.svm import SVC

from sklearn import preprocessing

from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler

In [3]: # reddit = praw.Reddit(client_id= 'RjdDRvb0SRsZ6L-F4RFaAg',

client_secret= '6PNorqgimRykIL16HaoIttzdEYGbgg',

user_agent ='516_scraper_practice')

posts = []

cmv = reddit.subreddit('ChangeMyView')

for post in cmv.hot(limit=100):

posts.append([post.title, post.id, post.url, post.selftext, post.link_flair_text, post.score, post.num_comments])

posts = pd.DataFrame(posts,columns=['title', 'id', 'url', 'body', 'flair', 'score', 'num_comments'])

display(posts)

In [4]: #Importing the .csv that was downloaded the afternoon of May 1st

posts = pd.read_csv('frozen_516_reddit_data.csv')

posts['flair'] = posts['flair'].fillna("None")

posts.head()

Out[4]:

In [5]: #cleaning the text, creating tokenized versions

def preprocess_text(text):

 text = text.lower()

 text = re.sub(f"[{re.escape(punctuation)}]", "", text) # Remove punctuation

 text = " ".join(text.split()) # Remove extra spaces, tabs, and new lines

 return text

posts["title_cleaned"] = posts["title"].apply(preprocess_text)

posts["body_cleaned"] = posts["body"].apply(preprocess_text)

#removing stopwords

sw = nltk.corpus.stopwords.words('english') + ['cmv:', 'cmv', 'people','us','need','give','would','dont','better','think',

 'shouldnt','better','life','someone','nothing','increase','good','least',

 'top','like','best','new','much','without','also','day','bad','one',

 'etc','word','get','less','really','theyre','cannot','used','make',

 'instead','given','say','become','isnt','take','needs','thing','never',

 'top','always','ive','ways','way','use','becomes','come','many','lives',

 'mods','alive','far','age','across']

#separate stopwords list for sentiment analysis - used later in the code

sw_senti = nltk.corpus.stopwords.words('english') + ['cmv:', 'cmv', 'people','us','need','give','would','think','life',

 'someone','top','new','much','also','day','one','etc',

 'instead','given','say','become','becomes','come','many','lives','states'

 'mods','alive','far','age','across','believe','go','programs','time','times','states']

posts['title_withoutstop'] = posts['title_cleaned'].apply(lambda x: ' '.join([word for word in x.split() if word not in (sw)]))

posts['body_withoutstop'] = posts['body_cleaned'].apply(lambda x: ' '.join([word for word in x.split() if word not in (sw)]))

posts['tokenized_title'] = posts.apply(lambda column: nltk.word_tokenize(column['title_withoutstop']), axis=1)

posts['tokenized_body'] = posts.apply(lambda column: nltk.word_tokenize(column['body_withoutstop']), axis=1)

posts.drop(posts[posts['flair'] == 'Removed - Submission Rule E'].index, inplace = True)

posts.drop(posts[posts['flair'] == 'Removed - Submission Rule A'].index, inplace = True)

posts.drop(posts[posts['flair'] == 'Removed - Submission Rule B'].index, inplace = True)

posts.drop(posts[posts['flair'] == 'META'].index, inplace = True)

#Checking values for flair

flair score num_comments title_withoutstop body_withoutstop tokenized_title tokenized_body

0 0 168 123 student loans guaranteed government surprised see topic debated sub recently light... [student, loans, guaranteed, government] [surprised, see, topic, debated, sub, recently...

1 1 440 201 believe isolation lockdown mentally unhealthy ... edit note already awarded deltas recommended
f...

[believe, isolation, lockdown, mentally,
unhea...

[edit, note, already, awarded, deltas, recomme...

2 1 1892 638 colleges waste students time useless
mandatory...

went competitive college astounded number
abso...

[colleges, waste, students, time, useless,
man...

[went, competitive, college, astounded,
number...

3 0 15 85 wrong abortion whatsoever treat something sacred countries certain crimi... [wrong, abortion, whatsoever] [treat, something, sacred, countries, certain,...

4 1 1270 140 western countries invest subsidize
semiconduct...

admittedly know complexities matters mind coul... [western, countries, invest, subsidize,
semico...

[admittedly, know, complexities, matters, mind...

Descriptive Stats

flair 344

score 95312

num_comments 83415

title_withoutstop student loans guaranteed governmentbelieve iso...

body_withoutstop surprised see topic debated sub recently light...

tokenized_title [student, loans, guaranteed, government, belie...

tokenized_body [surprised, see, topic, debated, sub, recently...

dtype: object

223.42732558139534

179.53488372093022

80.2304347826087

94.15217391304348

Topic Analysis

Dataset with Delta Awarded

Top ten words and topic analysis

final = pd.DataFrame(posts,columns=['flair','score','num_comments','title_withoutstop','body_withoutstop','tokenized_title','tokenized_body'])

final['flair'].unique()

mapping = {'Delta(s) from OP': 1, 'None': 0,'Delta(s) from OP - Fresh Topic Friday': 1,'Fresh Topic Friday':0}

final["flair"] = [mapping[item] for item in final.flair]

no_delta = final[final.flair == 0]

with_delta = final[final.flair == 1]

final.head()

Out[5]:

In [43]: #number of delta vs. non-delta posts in dataset

final.sum(axis=None) #344 out of 754

Out[43]:

In [49]: #average reddit score, number of comments for delta and non-delta posts

print(with_delta["score"].mean())

print(with_delta["num_comments"].mean())

print(no_delta["score"].mean())

print(no_delta["num_comments"].mean())

In [6]: #creating a vectorizer instance for topic analysis and the models

count_vectorizer = CountVectorizer(stop_words = sw)

In [7]: count_data1 = count_vectorizer.fit_transform(with_delta['title_withoutstop'])

 def plot_10_most_common_words1(count_data1, count_vectorizer):

 import matplotlib.pyplot as plt

 words = count_vectorizer.get_feature_names()

 total_counts = np.zeros(len(words))

 for t in count_data1:

 total_counts+=t.toarray()[0]

 count_dict = (zip(words, total_counts))

 count_dict = sorted(count_dict, key=lambda x:x[1], reverse=True)[0:10]

 words = [w[0] for w in count_dict]

 counts = [w[1] for w in count_dict]

 x_pos = np.arange(len(words))

 plt.bar(x_pos, counts, align = 'center', color = '#ff4500')

 plt.xticks(x_pos, words, rotation = 90, fontname = 'helvetica')

 plt.xlabel('Words', fontname = 'helvetica')

 plt.ylabel('Counts', fontname = 'helvetica')

 plt.title('10 Most Common Words for Delta awarded', fontname = 'helvetica')

 plt.show()

 plot_10_most_common_words1(count_data1, count_vectorizer)

In [8]: def print_topics(model, count_vectorizer, n_top_words):

 words = count_vectorizer.get_feature_names()

 for topic_idx, topic in enumerate(model.components_):

 print("\nTopic #%d:" % topic_idx)

 print(" ".join([words[i]

 for i in topic.argsort()[:-n_top_words - 1:-1]]))

In [9]: number_topics = 3

number_words = 8

Topics found via LDA:

Topic #0:

pay exist women states companies right ukraine elon

Topic #1:

gender reason useless media time wing death trans

Topic #2:

men american important believe society sports champion body

Dataset with No Delta Awarded

Topics found via LDA:

Topic #0:

companies student government reason russia society loan human

Topic #1:

world state america sexual time student western wrong

Topic #2:

men gender death change women body ukraine society

Complete dataset (with and without delta)

lda = LDA(n_components = number_topics, random_state = 42)

lda.fit(count_data1)

print("Topics found via LDA:")

print_topics(lda, count_vectorizer, number_words)

In [10]: count_data2 = count_vectorizer.fit_transform(no_delta['title_withoutstop'])

def plot_10_most_common_words2(count_data2, count_vectorizer):

 import matplotlib.pyplot as plt

 words = count_vectorizer.get_feature_names()

 total_counts = np.zeros(len(words))

 for t in count_data2:

 total_counts+=t.toarray()[0]

 count_dict = (zip(words, total_counts))

 count_dict = sorted(count_dict, key = lambda x:x[1], reverse = True)[0:10]

 words = [w[0] for w in count_dict]

 counts = [w[1] for w in count_dict]

 x_pos = np.arange(len(words))

 plt.bar(x_pos, counts, align = 'center', color = '#ff4500')

 plt.xticks(x_pos, words, rotation = 90, fontname = 'helvetica')

 plt.xlabel('Words',fontname = 'helvetica')

 plt.ylabel('Counts',fontname = 'helvetica')

 plt.title('10 Most Common Words for No Delta awarded', fontname = 'helvetica')

 plt.show()

plot_10_most_common_words2(count_data2, count_vectorizer)

In [11]: number_topic = 3

number_words = 8

lda = LDA(n_components = number_topics, random_state = 42)

lda.fit(count_data2)

print("Topics found via LDA:")

print_topics(lda, count_vectorizer, number_words)

In [12]: count_data3 = count_vectorizer.fit_transform(final['title_withoutstop'])

def plot_10_most_common_words3(count_data3, count_vectorizer):

 import matplotlib.pyplot as plt

 words = count_vectorizer.get_feature_names()

 total_counts = np.zeros(len(words))

 for t in count_data3:

 total_counts+=t.toarray()[0]

 count_dict = (zip(words, total_counts))

 count_dict = sorted(count_dict, key=lambda x:x[1], reverse=True)[0:10]

 words = [w[0] for w in count_dict]

 counts = [w[1] for w in count_dict]

 x_pos = np.arange(len(words))

 plt.bar(x_pos, counts, align = 'center', color = '#ff4500')

 plt.xticks(x_pos, words, rotation = 90, fontname = 'helvetica')

 plt.xlabel('Words', fontname = 'helvetica')

 plt.ylabel('Counts', fontname = 'helvetica')

 plt.title('10 Most Common Words for Complete Dataset', fontname = 'helvetica')

 plt.show()

plot_10_most_common_words3(count_data3, count_vectorizer)

Topics found via LDA:

Topic #0:

time states companies american pay men exist women

Topic #1:

death media ukraine state wrong person world speech

Topic #2:

gender student important society trans body government believe

Sentiment Analysis

title body flair score num_comments title_cleaned body_cleaned title_withoutstopsenti body_withoutstopsenti tokenized_title_senti tokenized_body_senti

0
CMV: Student Loans

Should Not be
Guaranteed by...

I was surprised to see
that this topic has

not...
0 168 123

cmv student loans
should not be

guaranteed by ...

i was surprised to
see that this topic

has not...

student loans
guaranteed
government

surprised see topic
debated sub recently

light...

[student, loans,
guaranteed,
government]

[surprised, see, topic,
debated, sub,
recently...

1
CMV: *IF* you believe

isolation from
lockdown ...

edit note: \nWhile I've
already awarded

delta...
1 440 201

cmv if you believe
isolation from

lockdown was...

edit note while ive
already awarded

deltas its...

isolation lockdown
mentally unhealthy

must log...

edit note ive already
awarded deltas
recommend...

[isolation, lockdown,
mentally, unhealthy,

mus...

[edit, note, ive, already,
awarded, deltas, re...

2
CMV: US Colleges
should not waste
student's ti...

I went to a very
competitive college in

the US...
1 1892 638

cmv us colleges
should not waste
students time...

i went to a very
competitive college

in the us...

colleges waste
students useless
mandatory classes

went competitive
college astounded
number abso...

[colleges, waste,
students, useless,

mandatory...

[went, competitive,
college, astounded,

number...

3
CMV: There is Nothing
Wrong with Abortion

What...

We do not treat life as
something that is

sacr...
0 15 85

cmv there is nothing
wrong with abortion

whats...

we do not treat life
as something that is

sacr...

nothing wrong abortion
whatsoever

treat something sacred
countries certain crimi...

[nothing, wrong,
abortion, whatsoever]

[treat, something,
sacred, countries,

certain,...

4
CMV: Western

countries should invest
in and su...

Admittedly, I do not
know much about the

compl...
1 1270 140

cmv western
countries should
invest in and sub...

admittedly i do not
know much about

the comple...

western countries
invest subsidize
semiconduct...

admittedly know
complexities matters

mind coul...

[western, countries,
invest, subsidize,

semico...

[admittedly, know,
complexities, matters,

mind...

...

576
CMV: Financially,

things would get better
if m...

One big aspect a lot
of people seem to

skip wh...
1 0 31

cmv financially
things would get
better if mor...

one big aspect a lot
of people seem to

skip wh...

financially things get
better saved money

big aspect lot seem skip
discussing financial ...

[financially, things,
get, better, saved,

money]

[big, aspect, lot, seem,
skip, discussing, fin...

577
CMV: The United

States will, at some
level, ou...

Let me put my bias
and world view on the

table...
1 0 46

cmv the united
states will at some

level outla...

let me put my bias
and world view on

the table...

united level outlaw
abortion gay marriage

inte...

let put bias world view
table upfront im strai...

[united, level, outlaw,
abortion, gay,
marriag...

[let, put, bias, world,
view, table, upfront, ...

578
CMV: It is only a matter
of time until Russia ...

The view I wish to
have changed is that

Ukrain...
1 1511 862

cmv it is only a
matter of time until

russia w...

the view i wish to
have changed is that

ukrain...

matter russia wins
ukraine

view wish changed
ukraine cannot win war

curre...

[matter, russia, wins,
ukraine]

[view, wish, changed,
ukraine, can, not, win,

...

579
CMV: Philosophy is the

most important
academic...

I think that philosophy
is an incredibly

impor...
1 21 99

cmv philosophy is
the most important

academic ...

i think that
philosophy is an
incredibly impor...

philosophy important
academic subject

mandator...

philosophy incredibly
important subject core

c...

[philosophy,
important, academic,

subject, man...

[philosophy, incredibly,
important, subject, c...

580
CMV: The abuse of
Reddit's revamped

block feat...

For those who aren't
aware, a few weeks

ago Re...
0 80 214

cmv the abuse of
reddits revamped
block featur...

for those who arent
aware a few weeks

ago redd...

abuse reddits
revamped block feature

outweigh ...

arent aware weeks ago
reddit revamped block

fe...

[abuse, reddits,
revamped, block,
feature, out...

[arent, aware, weeks,
ago, reddit, revamped,

b...

574 rows × 11 columns

In [13]: number_topic = 3

number_words = 8

lda = LDA(n_components = number_topics, random_state = 42)

lda.fit(count_data3)

print("Topics found via LDA:")

print_topics(lda, count_vectorizer, number_words)

In [14]: #creating a new datasent for sentiment analysis that is cleaned using different stopword

senti = posts

senti = senti.drop(columns =["tokenized_title", "tokenized_body", "title_withoutstop", "body_withoutstop","id","url"], axis = 1)

senti['title_withoutstopsenti'] = senti['title_cleaned'].apply(lambda x: ' '.join([word for word in x.split() if word not in (sw_senti)]))

senti['body_withoutstopsenti'] = senti['body_cleaned'].apply(lambda x: ' '.join([word for word in x.split() if word not in (sw_senti)]))

senti['tokenized_title_senti'] = senti.apply(lambda column: nltk.word_tokenize(column['title_withoutstopsenti']), axis=1)

senti['tokenized_body_senti'] = senti.apply(lambda column: nltk.word_tokenize(column['body_withoutstopsenti']), axis=1)

senti.drop(senti[senti["flair"] == "Removed - Submission Rule E"].index, inplace = True)

senti.drop(senti[senti["flair"] == "Removed - Submission Rule A"].index, inplace = True)

senti.drop(senti[senti["flair"] == "Removed - Submission Rule B"].index, inplace = True)

senti.drop(senti[senti["flair"] == "META"].index, inplace = True)

mapping = {"Delta(s) from OP": 1, "None": 0,"Delta(s) from OP - Fresh Topic Friday": 1,"Fresh Topic Friday":0}

senti["flair"] = [mapping[item] for item in senti.flair]

senti.head()

senti

Out[14]:

In [15]: sentiments = senti.drop(columns = ["tokenized_title_senti", "tokenized_body_senti"], axis = 1)

vader = SentimentIntensityAnalyzer()
scores = [vader.polarity_scores(body_withoutstopsenti) for body_withoutstopsenti in sentiments.body_withoutstopsenti]

Convert the list of dicts into a DataFrame

body_feelings = pd.DataFrame(scores)

pd.set_option('display.max_rows', 100)

#Appending the dataframe with just the sentiments to the data.frame (final2).

sentiments = sentiments.join(body_feelings)

#Creating a column that displays a binary valence column

sentiments['valence'] = sentiments['compound'].apply(lambda c: 'pos' if c >=0 else 'neg')

title body flair score num_comments title_cleaned body_cleaned title_withoutstopsenti neg neu pos compound valence

0 CMV: Student Loans Should
Not be Guaranteed by...

I was surprised to see that
this topic has not...

0 168 123 cmv student loans should
not be guaranteed by ...

i was surprised to see that
this topic has not...

student loans guaranteed
government

0.125 0.589 0.286 0.9684 pos

1 CMV: *IF* you believe
isolation from lockdown ...

edit note: \nWhile I've
already awarded delta...

1 440 201 cmv if you believe isolation
from lockdown was...

edit note while ive already
awarded deltas its...

isolation lockdown mentally
unhealthy must log...

0.352 0.422 0.225 -0.9902 neg

2 CMV: US Colleges should not
waste student's ti...

I went to a very competitive
college in the US...

1 1892 638 cmv us colleges should not
waste students time...

i went to a very competitive
college in the us...

colleges waste students
useless mandatory classes

0.114 0.678 0.208 0.9934 pos

3 CMV: There is Nothing Wrong
with Abortion What...

We do not treat life as
something that is sacr...

0 15 85 cmv there is nothing wrong
with abortion whats...

we do not treat life as
something that is sacr...

nothing wrong abortion
whatsoever

0.384 0.409 0.207 -0.9834 neg

4 CMV: Western countries
should invest in and su...

Admittedly, I do not know
much about the compl...

1 1270 140 cmv western countries
should invest in and sub...

admittedly i do not know
much about the comple...

western countries invest
subsidize semiconduct...

0.051 0.725 0.224 0.9844 pos

Topic Analysis based on Valence

Positive Sentiment

Topics found via LDA:

Topic #0:

rights russia media gender care ukraine government student

Topic #1:

society person exist problems useless state work important

Topic #2:

trans reason argument elon gender valid america wrong

Negative Sentiment

sentiments = sentiments.dropna()

sentiments = sentiments.drop(columns = ['body_withoutstopsenti'])

sentiments.head()

Out[15]:

In [16]: #splitting dataset based on valence

possentiment = sentiments[sentiments.valence == 'pos']

negsentiment = sentiments[sentiments.valence == 'neg']

In [17]: count_data4 = count_vectorizer.fit_transform(possentiment['title_withoutstopsenti'])

def plot_10_most_common_words4(count_data4, count_vectorizer):

 import matplotlib.pyplot as plt

 words = count_vectorizer.get_feature_names()

 total_counts = np.zeros(len(words))

 for t in count_data4:

 total_counts+=t.toarray()[0]

 count_dict = (zip(words, total_counts))

 count_dict = sorted(count_dict, key=lambda x:x[1], reverse=True)[0:10]

 words = [w[0] for w in count_dict]

 counts = [w[1] for w in count_dict]

 x_pos = np.arange(len(words))

 plt.bar(x_pos, counts, align = 'center', color = '#ff4500')

 plt.xticks(x_pos, words, rotation = 90, fontname = 'helvetica')

 plt.xlabel('Words', fontname = 'helvetica')

 plt.ylabel('Counts', fontname = 'helvetica')

 plt.title('10 Most Common Words for Positive Valence', fontname = 'helvetica')

 plt.show()

plot_10_most_common_words4(count_data4, count_vectorizer)

In [18]: number_topics = 3

number_words = 8

lda = LDA(n_components = number_topics, random_state = 42)

lda.fit(count_data4)

print("Topics found via LDA:")

print_topics(lda, count_vectorizer, number_words)

In [19]: count_data5 = count_vectorizer.fit_transform(negsentiment['title_withoutstopsenti'])

def plot_10_most_common_words5(count_data5, count_vectorizer):

 import matplotlib.pyplot as plt

 words = count_vectorizer.get_feature_names()

 total_counts = np.zeros(len(words))

 for t in count_data5:

 total_counts+=t.toarray()[0]

 count_dict = (zip(words, total_counts))

 count_dict = sorted(count_dict, key=lambda x:x[1], reverse=True)[0:10]

 words = [w[0] for w in count_dict]

 counts = [w[1] for w in count_dict]

 x_pos = np.arange(len(words))

 plt.bar(x_pos, counts, align = 'center', color = '#ff4500')

 plt.xticks(x_pos, words, rotation = 90, fontname = 'helvetica')

 plt.xlabel('Words', fontname = 'helvetica')

 plt.ylabel('Counts', fontname = 'helvetica')

Topics found via LDA:

Topic #0:

men companies world anything school religion home change

Topic #1:

society american wrong sports women ukraine wild problem

Topic #2:

death champion twitter gender penalty worst date white

Creating a Model Using Sentiment Scores as Features (Model 1)

title body flair score num_comments title_cleaned body_cleaned title_withoutstopsenti neg neu pos compound valence

0 CMV: Student Loans Should
Not be Guaranteed by...

I was surprised to see that
this topic has not...

0 168 123 cmv student loans should
not be guaranteed by ...

i was surprised to see that
this topic has not...

student loans guaranteed
government

0.125 0.589 0.286 0.9684 pos

1 CMV: *IF* you believe
isolation from lockdown ...

edit note: \nWhile I've
already awarded delta...

1 440 201 cmv if you believe isolation
from lockdown was...

edit note while ive already
awarded deltas its...

isolation lockdown mentally
unhealthy must log...

0.352 0.422 0.225 -0.9902 neg

2 CMV: US Colleges should not
waste student's ti...

I went to a very competitive
college in the US...

1 1892 638 cmv us colleges should not
waste students time...

i went to a very competitive
college in the us...

colleges waste students
useless mandatory classes

0.114 0.678 0.208 0.9934 pos

3 CMV: There is Nothing Wrong
with Abortion What...

We do not treat life as
something that is sacr...

0 15 85 cmv there is nothing wrong
with abortion whats...

we do not treat life as
something that is sacr...

nothing wrong abortion
whatsoever

0.384 0.409 0.207 -0.9834 neg

4 CMV: Western countries
should invest in and su...

Admittedly, I do not know
much about the compl...

1 1270 140 cmv western countries
should invest in and sub...

admittedly i do not know
much about the comple...

western countries invest
subsidize semiconduct...

0.051 0.725 0.224 0.9844 pos

title body flair score num_comments neg neu pos compound valence

0 CMV: Student Loans Should Not be Guaranteed by... I was surprised to see that this topic has not... 0 168 123 0.125 0.589 0.286 0.9684 pos

1 CMV: *IF* you believe isolation from lockdown ... edit note: \nWhile I've already awarded delta... 1 440 201 0.352 0.422 0.225 -0.9902 neg

2 CMV: US Colleges should not waste student's ti... I went to a very competitive college in the US... 1 1892 638 0.114 0.678 0.208 0.9934 pos

3 CMV: There is Nothing Wrong with Abortion What... We do not treat life as something that is sacr... 0 15 85 0.384 0.409 0.207 -0.9834 neg

4 CMV: Western countries should invest in and su... Admittedly, I do not know much about the compl... 1 1270 140 0.051 0.725 0.224 0.9844 pos

 plt.title('10 Most Common Words for Negative Valence', fontname = 'helvetica')

 plt.show()

plot_10_most_common_words5(count_data5, count_vectorizer)

In [20]: number_topics = 3

number_words = 8

lda = LDA(n_components = number_topics, random_state = 42)

lda.fit(count_data5)

print("Topics found via LDA:")

print_topics(lda, count_vectorizer, number_words)

In [21]: sentiments.head()

Out[21]:

In [22]: #Using score, num_comments, and compound as predictors of Delta

#dropping columns from sentiments to form dataset for Model 1

numericmodel = sentiments.drop(columns = ['title_withoutstopsenti',"title_cleaned","body_cleaned"])

numericmodel.head()

Out[22]:

In [23]: def evaluate_model(data, model, test_size = 0.3, normalize_cf = False, prediction_data = None):

 if model not in ['knn','randomforest','boost','svm','decisiontree','bagging','logistic',

 'passive_aggressive','radius_neighbors']:

 raise ValueError('Model {} not recognized. Model must be one of the following: {}'.format(model, ['knn','randomforest','boost','svm','decisiontree','bagging','logistic
 'passive_aggressive','radius_neighbors']))

 scaler = MinMaxScaler()

 features = data.loc[:,'score':'compound']

 features = scaler.fit_transform(features)

 target = data['flair']

 x_train, x_test, y_train, y_test = train_test_split(features, target, test_size = test_size, random_state = 808)

 init_model = None

 if model == 'knn':

 init_model = knn(n_neighbors = 1)

 elif model == 'randomforest':

 init_model = RandomForestClassifier(random_state = 808)

 elif model == 'boost':

 init_model = GradientBoostingClassifier(random_state = 808)

 elif model == 'svm':

 init_model = SVC(random_state = 808)

 elif model == 'decisiontree':

 init_model = DecisionTreeClassifier(random_state = 808)

 elif model == 'bagging':

 init_model = BaggingClassifier(random_state = 808)

 elif model == 'logistic':

 init_model = LogisticRegression(random_state = 808)

 elif model == 'passive_aggressive':

Accuracy Score for decisiontree: 52.63%

Accuracy Score for logistic: 63.16%

Accuracy Score for bagging: 56.14%

Accuracy Score for boost: 59.65%

Accuracy Score for randomforest: 64.91%

 init_model = PassiveAggressiveClassifier(random_state = 808)

 elif model == 'radius_neighbors':

 init_model = RadiusNeighborsClassifier(radius = 100, outlier_label = "most_frequent")

 fitted_model = init_model.fit(x_train ,y_train)

 test_predictions = fitted_model.predict(x_test)

 accuracy_score = fitted_model.score(x_test,y_test)

 cm = confusion_matrix(y_test, test_predictions, labels = fitted_model.classes_)

 disp = ConfusionMatrixDisplay(confusion_matrix = cm,display_labels = fitted_model.classes_)

 disp.plot(cmap = 'Oranges')

 plt.title('Confusion Matrix of Observation Counts for {}'.format(model), fontname = 'helvetica')

 plt.show()

 print("Accuracy Score for {}: {:.2%}".format(model, accuracy_score))

In [24]: evaluate_model(numericmodel, model = 'decisiontree')

evaluate_model(numericmodel, model = 'logistic')

evaluate_model(numericmodel, model = 'bagging')

evaluate_model(numericmodel, model = 'boost')

evaluate_model(numericmodel, model = 'randomforest')

evaluate_model(numericmodel, model = 'svm')

evaluate_model(numericmodel, model = 'passive_aggressive')

evaluate_model(numericmodel, model = 'radius_neighbors')

Accuracy Score for svm: 64.33%

Accuracy Score for passive_aggressive: 61.99%

Accuracy Score for radius_neighbors: 63.16%

Obtaining Coefficients for Logistic Regression

Training set score: 0.583

Test set score: 0.632

Optimization terminated successfully.

 Current function value: 0.652373

 Iterations 7

 Logit Regression Results

==

Dep. Variable: flair No. Observations: 567

Model: Logit Df Residuals: 564

Method: MLE Df Model: 2

Date: Wed, 04 May 2022 Pseudo R-squ.: 0.03189

Time: 11:25:06 Log-Likelihood: -369.90

converged: True LL-Null: -382.08

Covariance Type: nonrobust LLR p-value: 5.115e-06

==

 coef std err z P>|z| [0.025 0.975]

--

x1 0.1426 1.493 0.096 0.924 -2.784 3.069

x2 8.5578 2.661 3.216 0.001 3.341 13.774

x3 0.1381 0.145 0.951 0.342 -0.147 0.423

==

Creating a Model Using The Vectorized Text to Predict (Model 2)

In [25]: scaler = MinMaxScaler()

features1 = numericmodel[['score', 'num_comments', 'compound']]

features1 = scaler.fit_transform(features1)

target = numericmodel['flair']

test_size = 0.3

x_train, x_test, y_train, y_test = train_test_split(features1, target, test_size = test_size, random_state = 808)

logreg = LogisticRegression().fit(x_train, y_train)

logreg

print("Training set score: {:.3f}".format(logreg.score(x_train,y_train)))

print("Test set score: {:.3f}".format(logreg.score(x_test,y_test)))

logit_model = sm.Logit(target, features1)

result = logit_model.fit()

print(result.summary())

In [40]: text_predictor = final

#Create a Target
flair = text_predictor.flair

X_train, X_test, y_train, y_test = train_test_split(text_predictor['title_withoutstop'], flair, test_size=0.2, random_state= 42)

#Intialize the Count Vectorizer

count_vectorizer = CountVectorizer(stop_words=sw)

count_train = count_vectorizer.fit_transform(X_train)

count_test = count_vectorizer.transform(X_test)

Initialize tfidf vectorizer

tfidf_vectorizer = TfidfVectorizer(stop_words=sw)

Create tfidf train and test variables

tfidf_train = tfidf_vectorizer.fit_transform(X_train)

tfidf_test = tfidf_vectorizer.transform(X_test)

NaiveBayes Tfidf Score: 0.5739130434782609

NaiveBayes Count Score: 0.5304347826086957

LinearSVC Score: 0.539

Predicted Post that Led to Changed View [1]

Predicted Post that Did Not Lead to View Change [0]

#Creating Naive Bayes Model Using TFIDF

tfidf_nb = MultinomialNB()

tfidf_fitted_model = tfidf_nb.fit(tfidf_train, y_train)

tfidf_nb_pred = tfidf_nb.predict(tfidf_test)

tfidf_nb_score = metrics.accuracy_score(y_test, tfidf_nb_pred)

cm_tfidf = confusion_matrix(y_test, tfidf_nb_pred, labels = tfidf_fitted_model.classes_)

disp_tfidf = ConfusionMatrixDisplay(confusion_matrix = cm_tfidf, display_labels = tfidf_fitted_model.classes_)

disp_tfidf.plot(cmap = 'Oranges')

plt.title('Confusion Matrix of Observation Counts for Naive Bayes TFIDF', fontname = 'helvetica')

plt.show()

print('NaiveBayes Tfidf Score: ', tfidf_nb_score)

#Creating Naive Bayes Model Using Count Vectorizer

count_nb = MultinomialNB()

count_fitted_model = count_nb.fit(count_train, y_train)

count_nb_pred = count_nb.predict(count_test)

count_nb_score = metrics.accuracy_score(y_test, count_nb_pred)

cm_count = confusion_matrix(y_test, count_nb_pred, labels = count_fitted_model.classes_)

disp_count = ConfusionMatrixDisplay(confusion_matrix = cm_count, display_labels = count_fitted_model.classes_)

disp_count.plot(cmap = 'Oranges')

plt.title('Confusion Matrix of Observation Counts for Naive Bayes CountVectorizer', fontname = 'helvetica')

plt.show()

print('NaiveBayes Count Score: ', count_nb_score)

In [41]: tfidf_svc = LinearSVC()

tfidf_svc.fit(tfidf_train, y_train)

tfidf_svc_pred = tfidf_svc.predict(tfidf_test)

tfidf_svc_score = metrics.accuracy_score(y_test, tfidf_svc_pred)

print("LinearSVC Score: %0.3f" % tfidf_svc_score)

In [42]: # delta_post = "I do not feel very strongly about veganism, so please try to convince me"

nondelta_post = "I will never change my view about veganism, but come at me"

delta_post = "I do not feel very strongly about Alex winning Eurovision, so please try to convince me"

nondelta_post = "I will never change my view about Alex winning Eurovision, but come at me"

delta_post = "I do not think Alex will win Eurovision, so convince me otherwise"

nondelta_post = "I will not change my view about Alex winning Eurovision, but come at me"

delta_post_vectorized = tfidf_vectorizer.transform([delta_post])

nondelta_post_vectorized = tfidf_vectorizer.transform([nondelta_post])

delta_post_pred = tfidf_svc.predict(delta_post_vectorized)

nondelta_post_pred = tfidf_svc.predict(nondelta_post_vectorized)

print('Predicted Post that Led to Changed View', delta_post_pred)

print('Predicted Post that Did Not Lead to View Change', nondelta_post_pred)

In []:

